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The problem considered is that of estimating simultaneously the differences between the means 
of p > 2 test treatments and the mean of a control treatment. For design purposes the popu- 
lation variances of all p + 1 treatments are regarded as known. Tables are given that provide the 
experimenter with a basis for determining the minimal total number of experimental units and 
the optimal allocation of these units among the p + 1 treatments, in order to make one-sided or 
two-sided joint confidence interval estimates of the differences between the mean of each of the 
test treatments and the mean of the control treatment. These intervals achieve a specified joint 
confidence coefficient 1 - a for a specified allowance associated with the common width of the 
interval estimates. Comparisons with some competing allocation rules are also given. 

KEY WORDS: Multiple comparisons with a control; Dunnett's procedure; Optimal allo- 
cation of observations. 

1. INTRODUCTION 
Consider the problem of comparing simultaneously 

p > 2 test treatments with a control treatment. The 
present article is concerned with certain design aspects 
of this problem-in particular, the design decision of 
how to "optimally" allocate experimental units among 
the test treatments and the control treatment. Dun- 
nett (1955, 1964) considered the data analysis aspects 
of this problem and provided constants necessary to 
make joint 100(1 - a) percent confidence statements 
(either one-sided or two-sided) concerning the differ- 
ences between the mean of each of the test treatments 
and the mean of the control treatment when the 
common variance of the p + 1 treatments is unknown. 

We begin by describing an example (see Dunnett 
1955) that illustrates the underlying design consider- 
ations: It is known that the breaking strength of a 
fabric is affected by the chemical process with which it 
is treated. Suppose that researchers wish to compare 
the effects of three different chemical processes with 
the effect of a standard method of manufacture which 
is considered as the control treatment. In particular, 
suppose that their objective is to retain for further 
study only those chemical treatments which cause an 
improvement in the mean breaking strength over that 
of the control, and to discard the others. Thus they are 

interested in one-sided comparisons of means. The 
researchers wish to determine the minimum total 
number of observations necessary that would permit 
them to make the desired joint inferences with a speci- 
fied control over the error probability for a given 
"allowance." Because the control treatment plays a 
pivotal role, in that every test treatment is compared 
to it, it is natural for the researchers to believe that 
more observations should be allocated to the control 
treatment than to each of the test treatments (as- 
suming that the variability associated with each is the 
same). The question then is, "What is the optimal 
allocation of observations that would minimize the 
total number of observations to be taken?" The tables 
in the present article help to provide an answer to this 
question. 

The researchers might proceed as follows in speci- 
fying statistical requirements: First, they recognize 
that they are dealing with a multiple comparisons 
problem. If the results are to be given in terms of 
confidence statements concerning the three differences 
between the means of the test treatments and the 
mean of the control treatment, then they may wish to 
achieve a joint confidence coefficient of 1 - a = .95 
(say). Next, they specify the "allowance" (a term first 
introduced by Tukey 1953) on the error in the esti- 
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mate of the difference between each treatment mean 
and the control mean. Here, allowance refers to the 
common "width" of the confidence intervals (see Sec- 
tion 2). For a specified joint confidence coefficient, a 
small (large) allowance would clearly require a large 
(small) total number of observations. Based on past 
experience with similar data, they may be willing to 
assume for design purposes that the variances of ob- 
servations from the test treatments as well as from the 
control treatment are equal. If not enough past data 
are available to guide them, they may be able (e.g., 
based on the anticipated ranges of the observations) 
to specify an upper bound on the common value of the 
variance. This bound then can be used to design a 
conservative experiment. In that case, for analysis pur- 
poses the pooled sample estimate of the variance ob- 
tained from the data should be used. In Section 4 we 
shall provide a solution to the researchers' design 
problem using tables given in the present article; we 
shall also indicate there how they can carry out the 
design and analysis if they are able to specify only an 
upper bound on the common variance. 

Strictly speaking, the tables herein are applicable 
only when all p + 1 variances have values (possibly 
unequal) that are known from past experience. The 
case of completely unknown, possibly unequal vari- 
ances cannot be dealt with by the methods of the 
present article even when individual upper bounds on 
these variances can be postulated. This is so because 
in the analysis stage, use of estimates of these different 
variances leads to a Behrens-Fisher type of problem 
for which no exact solution is presently available (see, 
e.g., Tamhane 1977). 

In this article we focus our attention on the problem 
of optimal allocation of experimental units among the 
test treatments and the control treatment to minimize 
the total size of the experiment subject to specified 
joint confidence coefficient and specified common al- 
lowance. (We recognize that additional considerations 
may also be present in planning any experiment, e.g., 
having enough data for a test of normality, possibly 
unequal costs of experimentation with different treat- 
ments, etc.; however, we do not deal with such prob- 
lems here.) 

As noted above, for design purposes the p + 1 vari- 
ances are regarded as known and possibly unequal. 
Bechhofer (1969) (hereinafter referred to as B 1) gave a 
solution to this problem for one-sided comparisons 
under the restriction that the variances of the sample 
means of the p test treatments are known and equal. 
Bechhofer and Nocturne (1972) (hereinafter referred 
to as B2) generalized these results to two-sided com- 
parisons. Only small illustrative sets of tables of opti- 
mal allocations (all for p = 2) were given in B and B2. 
In the present article we give an extensive set of tables 
for p = 2(1)10 both for joint one-sided or joint two- 

sided comparisons based on the formulas given in B 1 
and B2. (See Remark 2.2 for the case p = 1.) For such 
comparisons these tables can be used to determine the 
smallest total number of observations necessary to 
guarantee selected joint confidence coefficients of 
(0.75, 0.90, 0.95, 0.99) for given specified common 
allowance; the tables also tell how to allocate these 
observations optimally among the p + 1 treatments. 

Remark 1.1: The present paper (and each of the 
aforementioned papers) deals with the case in which a 
completely randomized design is to be employed. 
However, many practical situations may require the 
blocking of experimental units. If the block size is 
large enough to accommodate one replication of all of 
the test treatments and additional control treatments 
as well, then the optimal allocations in the present 
article can be used. If the blocks have a common size 
k < p + 1, that is, if the p + 1 treatments are to be 
compared in incomplete blocks of size k, then entirely 
new considerations are required to determine the opti- 
mal incomplete block design. This problem is con- 
sidered in Bechhofer and Tamhane (1981); the opti- 
mal design tables for incomplete blocks of common 
size k = 2, 3, p = k(1)6 are given in Bechhofer and 
Tamhane (1982). 

In Section 2 we introduce our notation and pose the 
optimal allocation problem both for one-sided and for 
two-sided comparisons. The tables containing con- 
stants necessary to implement the procedure are given 
in Sections 3 and 4 along with an explanation of how 
they are to be used. In Section 5 we make comparisons 
between the optimal allocations given herein and cer- 
tain other allocation rules. Section 6 contains some 
concluding remarks. The formulas used in the compu- 
tation of Tables 1 through 4, and details of the compu- 
tations are given in the Appendix. 

2. NOTATION AND STATEMENT OF THE 
OPTIMAL ALLOCATION PROBLEMS 

Let the treatments be indexed by 0, 1, ..., p with 0 
denoting the control treatment and 1, 2, ..., p denot- 
ing the p > 2 test treatments. We assume that the 
observations Xij ( = 1, 2, ...) on the ith treatment are 
normally distributed with unknown mean pi and 
known variance a2 (0 < i < p), and that all observa- 
tions are mutually independent. Based on Ni > 1 ob- 
servations on the ith treatment (0 < i < p) it is desired 
to make either 

1. A 100(1 - a) percent joint one-sided confidence 
statement of the form 

{Io-i <Xo-xi + d (1 < i < p)}, (2.1) 

or 
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2. A 100(1 - a) percent joint two-sided confidence 
statement of the form 

{xo - xi - d < o - i 

< xo-xi + d ( < i < p)}. (2.2) 

In (2.1) and (2.2), xi is the observed value of the 
random variable Xi = i 1 Xij /N (0 < i < p), and 
d > 0 is a specified common allowance. 

The optimal allocation problem is that of finding 
the allocation vector (No, N1, ..., Np), which for 
known (a2, a2, ..., a2) and specified 1-a and d, 
minimizes the total sample size N = f=o Ni subject 
to 

P{o- , < Xo--X,+d (1 < i < p)} >1- 

(2.3) 
for one-sided comparisons, and 

P{XO - Xi - d < 0o - pi 

<Xo-Xi + d (1 < i < p)} 1-a (2.4) 

for two-sided comparisons. For both cases we denote 
the optimal allocation by (No, N1, ..., Np) and the 
smallest total sample size by N = El=o Ni (the partic- 
ular case under consideration being clear from the 
context). 

Remark 2.1: This same optimal allocation (No, N1, 
..., Np) maximizes the joint confidence coefficient for 
known (T , a2, ..., a2) and specified total sample size 
N= oNi andd. 

Continuous approximations to the probabilities 
(2.3) and (2.4) are obtained in B and B2, respectively, 
by letting 

p 

yi=Ni ENi (O<i<p), (2.5) 
i=o 

and regarding the yi as nonnegative continuous vari- 
ables satisfying E'=o yi = 1. The solutions given in B 
and B2 provide optimal allocations for one-sided and 
two-sided comparisons under the restriction that the 
variances a?/Ni (1 ? i < p) of the test treatment 
means are equal; that is, a2/Ni = a2/Nj (i 1j; 1 < i, 
j < p). The solution to the problem of optimal allo- 
cations for one-sided comparisons without any re- 
striction on the a2/Ni (1 < i < p) is given in Bechhofer 
and Turnbull (1971). 

Under the restriction that the variances of the treat- 
ment means are equal, and using the continuous ap- 
proximation, the probabilities (2.3) and (2.4) can be 
shown for given p to depend on (a2, a2, ..., ap), N 
and d only through yo (the proportion of the total 
number of observations taken on the control treat- 
ment) and two pure numbers 

, = d N/ao (2.6) 

and 

i= IE )/o. (2.7) 

(Note that in papers B 1 and B2, fi was used to denote 
the quantity 0 defined in (2.7).) It sometimes might be 
reasonable to assume that the test variances a2 

(1 < i < p) are all equal to some multiple c (say) of the 
control variance o2; that is, 0 = cp. For this reason 
the 0 values used in preparing the tables are chosen to 
be selected multiples of p. For given p and 0, and 
specified 1 -a, the optimal solutions that we denote 
by (7o^0, ) are uniquely determined. The simultaneous 
equations that yield these solutions are given in the 
Appendix. 

The entries (7o, ;) in Tables 1 through 4 are to be 
used as follows: The a2 (0 < i < p) are given as data of 
the problem; these determine 0, via (2.7). The experi- 
menter specifies the allowance d, and the one-sided or 
two-sided joint confidence coefficient 1 - a. Then p, 0, 
and the one-sided or two-sided 1 -a determine ('y ,Z). 
From (2.6), the smallest total sample size N is then the 
smallest integer > (,a0o/d)2. The optimal allocations 
are given by No = Q N (to the nearest integer) and 
Ni = (N - No)2/ao (to the nearest integer) for 
(1 < i < p); these approximate integer allocations that 
were obtained by using the continuous approxi- 
mations will be very close to the exact integer allo- 
cations if N is large. 

Remark 2.2: It should be noted that for p = 1 the 
optimal allocation both for one-sided and for two- 
sided comparisons is ao/No = a1/N1. Then N = 
{(ao + al)zJd} 2 and Ni = Nai/(ao + a,) (i = 0, 1) for 
one-sided comparisons; the same expressions hold for 
two-sided comparisons with z1/2 replacing za. Here z, 
is the upper ca-point of the standard normal distri- 
bution. 

3. DESCRIPTION OF THE TABLES 
Tables 1 through 4 give values of (yo, X), for 

1 - a = 0.75, 0.90, 0.95 and 0.99, respectively, both for 
one-sided and two-sided comparisons for p = 2(1)10. 
The tabulated values of 70 are correct to within one in 
the third decimal place while the tabulated values of ; 
are rounded up in the third decimal place to guaran- 
tee a joint confidence coefficient > 1 - a for the tabu- 
lated value of 0o. For each value of p and 1 - a the 
tabulations are given for 0 = p/2, p, 3p/2, and 2p. 
From (2.7) we see that the tables therefore can be used 
for the special case a2 = *- = a2 (say) when 
a2 = caO2 for c = ?, 1, 3, and 2. In particular, the 0 = p 
column can be used for the special case a2 = a2 = 

2 

For fixed p, 0, and 1 - a an examination of the 
tables shows that 7o and i, in the two-sided case are 
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Table 1. Optimal Allocation1 on the Control (yo) and Associated to Achieve Joint Confidence Coefficient 
1 - c = .75 

Type of p 

intervals 2 3 4 5 6 7 8 9 10 

1-sided 0.425 0.357 0.316 0.288 0.268 0.251 0.238 0.227 0.217 1 -s ided 
2.008 2.651 3.197 3.681 4.123 4.532 4.916 5.280 5.626 

p/2 

2-sided 0.464 0.403 0.365 0.337 0.315 0.298 0.284 0.272 0.262 
2.901 3.610 4.210 4.741 5.223 5.670 6.087 6.682 6.856 

1-sided 0.352 0.292 0.257 0.233 0.215 0.202 0.190 0.181 0.173 
2.482 3.351 4.094 4.757 5.363 5.927 6.456 6.958 7.436 

p 

2-sided 0.387 0.332 0.298 0.274 0.255 0.240 0.228 0.218 0.209 
3.541 4.495 5.309 6.033 6.693 7.305 7.879 8.422 8.938 

1-sided 0.312 0.257 0.225 0.204 0.188 0.175 0.165 0.157 0.150 
2.842 3.882 4.775 5.574 6.306 6.987 7.628 8.235 8.814 

3p/2 

2-sided 0.344 0.293 0.262 0.240 0.223 0.209 0.198 0.189 0.181 
4.027 5.168 6.144 7.014 7.810 8.549 9.242 9.898 10.523 

1-sided 0.284 0.233 0.204 0.184 0.170 0.158 0.149 0.142 0.135 
3.145 4.328 5.346 6.258 7.096 7.877 8.611 9.307 9.971 

2p 

2-sided 0.314 0.267 0.238 0.217 0.201 0.189 0.179 0.171 0.163 
4.435 5.732 6.844 7.838 8.747 9.592 10.386 11.138 11.854 

The upper entry in each cell in the body of the table is y0 and the lower entry is X. 

Table 2. Optimal Allocation' on the Control (yo) and Associated to Achieve Joint Confidence Coefficient 
1 - a = .90 

Type of P 

intervals 2 3 4 5 6 7 8 9 10 

0.468 0.409 0.371 0.343 0.322 0.304 0.290 0.278 0.267 
1-sided 

3.149 3.876 4.491 5.035 5.529 5.986 6.414 6.817 7.201 

p/2 0.480 0.424 0.387 0.360 0.338 0.321 0.307 0.294 0.284 
2-sided 

3.830 4.606 5.261 5.840 6.366 6.851 7.305 7.733 8.139 

0.389 0.335 0.301 0.277 0.258 0.243 0.231 0.220 0.211 
1-sided 

3.838 4.819 5.654 6.397 7.074 7.701 8.290 8.846 9.375 

p 
0.400 0.348 0.314 0.290 0.271 0.256 0.244 0.233 0.224 

4.651 5.699 6.590 7.381 8.101 8.768 9.393 9.983 10.544 

0.345 0.295 0.263 0.241 0.224 0.211 0.200 0.190 0.182 
1-sided 

4.364 5.537 6.540 7.434 8.251 9.008 9.720 10.392 11.033 

3p/2 
0.354 0.306 0.275 0.253 0.236 0.222 0.211 0.201 0.193 

2-sided 
5.278 6.532 7.603 8.556 9.425 10.231 10.986 11.700 12.379 

0.315 0.268 0.238 0.218 0.202 0.190 0.179 0.171 0.163 
1-sided 

4.805 6.140 7.284 8.305 9.240 10.107 10.922 11.693 12.426 

2p 
0.323 0.278 0.249 0.228 0.212 0.200 0.189 0.180 0.173 

2-sided 
5.804 7.233 8.456 9.544 10.538 11.461 12.326 13.145 13.924 

/The upper entry in each cell in the body of the table is y and the lower entry is The upper entry in each cell in the body of the table is Y0 and the lower entry is X. 
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Table 3. Optimal Allocation' on the Control (o) and Associated 
1 - = .95 

91 

to Achieve Joint Confidence Coefficient 

Type of p 

intervals 2 3 4 5 6 7 8 9 10 

0.480 0.424 0.387 0.359 0.338 0.321 0.306 0.294 0.283 
1-sided 

3.830 4.606 5.261 5.841 6.366 6.852 7.306 7.734 8.140 

p/2 0.487 0.432 0.396 0.369 0.348 0.330 0.316 0.303 0.292 
2-sided 

4.423 5.242 5.933 6.543 7.097 7.608 8.086 8.536 8.963 

0.399 0.348 0.314 0.290 0.271 0.256 0.243 0.233 0.223 
1-sided 

4.651 5.700 6.591 7.382 8.103 8.770 9.395 9.986 10.547 

0.405 0.354 0.321 0.297 0.278 0.263 0.250 0.239 0.230 
2-sided 

5.360 6.469 7.411 8.247 9.007 9.711 10.369 10.990 11.581 

0.354 0.305 0.274 0.252 0.235 0.221 0.210 0.200 0.192 
1-sided 

5.278 6.534 7.605 8.559 9.429 10.235 10.991 11.705 12.385 
3p/2 

3 2 sided 0.358 0.311 0.281 0.258 0.241 0.227 0.216 0.206 0.198 2-sided 
6.077 7.407 8.540 9.548 10.466 11.317 12.114 12.866 13.582 

0.323 0.277 0.248 0.227 0.211 0.199 0.188 0.180 0.172 

1-sided 5.806 7.235 8.458 9.548 10.543 11.467 12.333 13.152 13.931 
2p 

0.327 0.282 0.254 0.233 0.217 0.204 0.193 0.185 0.177 
2-sided 6.680 8.195 9.490 10.642 11.694 12.669 13.582 14.445 15.267 

The upper entry in each cell in the body of the table is y and the lower entry is . 

Table 4. Optimal Allocation' on the Control (y) and Associated to Achieve Joint Confidence Coefficient 
1 -a = .99 

e 
Type of 

intervals 

p 

2 3 4 5 6 7 8 9 

0.492 0.439 0.403 0.376 0.355 0.338 0.323 0.310 
1-sided 

5.115 5.986 6.720 7.369 7.956 8.499 9.005 9.482 

p/2 0.494 0.442 0.406 0.380 0.358 0.341 0.326 0.314 2-sided 
5.589 6.496 7.261 7.936 8.548 9.112 9.639 10.136 

0.409 0.359 0.326 0.302 0.283 0.268 0.255 0.244 
1-sided 

6.190 7.373 8.377 9.267 10.076 10.824 11.524 12.184 

0.410 0.361 0.329 0.304 0.286 0.270 0.257 0.246 
2-sided 

6.758 7.993 9.042 9.970 10.814 11.595 12.324 13.012 

0.362 0.315 0.285 0.262 0.245 0.231 0.220 0.210 
1-sided 

7.012 8.433 9.644 10.719 11.697 12.603 13.451 14.252 

3p/2 
0.363 0.317 0.287 0.264 0.247 0.233 0.221 0.211 27.652 9.140 10.405 11.528 12.549 13.495 14.3-s ided 
7.652 9.140 10.405 11.528 12.549 13.495 14.380 15.215 

0.236 0.220 0.207 

11.941 13.063 14.102 

0.238 0.222 0.209 

12.839 14.011 15.096 

0.197 0.187 

15.075 15.994 

0.198 0.189 

16.112 17.070 

/The upper entry in each cell in the body of the tabe is and the lower entry is The upper entry in each cell in the body of the table is Yo and the lower entry is X. 
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1-sided 

2-sided 

0.330 

7.704 

0.331 

8.406 

0.286 

9.327 

0.287 

10.105 

0.257 

10.710 

0.259 

11.553 

2p 
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always greater than the corresponding yo and A in the 
one-sided case. For fixed p and 0, in both cases yo 
increases with 1-a and approaches the limit 
1/(1 + /) as 1 - a approaches unity (and hence 
yo/;i a /0 ao//a2 for 1 < i < p). This limiting result 
has been proven analytically in B1 and B2 for the 
one-sided and two-sided cases, respectively. For aO = 

= * = this gives the limiting result that 
y0o/yi-- P (1 < i < p). Note that Dunnett (1955, p. 
1107) recommended that No/Ni = /p (1 < i < p); 
this recommendation had been made earlier by 
Finney (1952) and other authors (but not in the con- 
text of multiple comparisons with a control). 

4. USE OF THE TABLES 

To illustrate the use of the tables we return to the 
example described in Section 1. For that example, 
assume ai = 5 (0 < i < 3) and d = 5; then 0 = p = 3. 
For one-sided intervals with d = 5 and 1 - a = .95 we 
find from Table 3 that yo = .348 and i, = 5.700. Hence 
N = <{(5.700)5/5}2> = <32.49> = 33 (where <x> de- 
notes the smallest integer > x) and No = 12, N1 = 
N2 = N3 = 7. Thus by taking 7 observations on each 
of the test treatments and 12 observations on the 
control treatment the researchers can obtain the de- 
sired joint confidence interval estimates using the 
smallest possible total sample size. 

If N = 33 seems too high in relation to the re- 
sources available to the researchers, then they must 
make trade-offs by either settling for larger allowance 
and/or smaller joint confidence coefficient. 

For values of 0 and 1 - a not given in the present 
article, quadratic interpolation should give results suf- 
ficiently accurate for practical purposes. It might be 
noted that yo is relatively insensitive to 1 - a but A is 
naturally quite sensitive to it. Also, the total sample 
size N is quite sensitive to the assumed a, and d. The 
assumed a2 (0 < i < p) affect N in two ways: (a) di- 
rectly through Ua via (2.6), and (b) through 0 = 
Zf'=1 i2/o - A small assumed value of c2 leads to 
larger 0 (for fixed a2 ..., a2) and hence larger A, but 
since N is proportional to o2, the final value of N may 
turn out to be smaller. 

If the experimenter is prepared to assume that Ca2 = 
a2 (0 < i < p) where the actual value of a2 is unknown, 
and believes that a2 < a2 where a2 is known, then this 
information can be used in designing the experiment, 
for example, acting as if a2 = 02 leads to a conserva- 
tive choice of N. However, after the experiment has 
been conducted, when the results are being summar- 
ized, the common unknown a2 should be estimated 
using the pooled data, the usual unbiased estimate s2 
being based on v = N - (p + 1) df if a completely 
randomized design is used. The estimate then should 
be used with Dunnett's (1955) formulas for joint confi- 
dence statements (analogous to statements 1 and 2 of 

(2.1) and (2.2), respectively): 

3. A 100(1 - a) percent joint one-sided confidence 
statement 

{o -1 p< XO- X i- 

+ tP,p s//(1l/No) + (1/N1) (1 < i < p)} (4.1) 

or 
4. A 100(1 - a) percent joint two-sided confidence 

statement 

{x- - t'(V)p sI(l /No) + (1/N1) < [o - i 

< - xi + t( )psx /(1/No) + (1/N1) (4.2) 

(1 < i<p)}. 

Here t()p p (t'* p) is the upper cx equicoordinate point 
of the p-variate t-distribution (p-variate t l- 
distribution) with df v and equal correlations p = 
NI/(No + N1); tables of t()p are given for selected p 
by Krishnaiah and Armitage (1966), while tables of 
t') p are given for selected p by Hahn and Hendrick- 
son (1971). 

5. COMPARISONS WITH OTHER 
ALLOCATION RULES 

In this section we compare the optimal allocation 
rule, which we denote by R, with three other rules: (a) 
equal allocation rule REQ (explained below), (b) Dun- 
nett's (1955) allocation rule RD mentioned at the end 
of Section 3, and (c) Bechhofer and Turnbull's (1971) 
unrestricted optimal allocation rule RBT, mentioned 
in the paragraph following Remark 2.1. The compari- 
sons will be based on the sample sizes N and N 
required by R and the competing rule R, respectively, 
to guarantee the same joint one-sided (two-sided) con- 
fidence coefficient 1 - a using (2.3) (using (2.4)) for 
given (a2, a2, ..., a2) and specified d. The value of N 
required in these comparisons is given by 

N= ((= ao/d)2>, (5.1) 

and A is chosen from the appropriate table. Formulas 
for the N-values required by the three competing rules 
are given below. In each case we use these to make 
numerical comparisons with N. 

(a) Equal allocation rule REQ: For this rule the Ni 
(0 < i < p) are chosen equal to NEQ/(p + 1), where 
NEQ is the total sample size required by REQ to 
guarantee the specified requirement on the joint confi- 
dence statement. We give the formula for NEQ in the 
important special case a2 = a = * * * = p2 = (say). 

For one-sided comparison 

NEQ = (P + 1)<2{tl , 12(a/d)}2 (5.2) 

where t(0, , 1/2 is the upper a-point of the distribution 
of the maximum of p equicorrelated standard normal 
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random variables with common correlation p = ?. 
The values of t( , 1/2 have been tabulated for selected 
p and 1 - a by Gupta, Nagel, and Panchapakesan 
(1973). 

For two-sided comparisons t(,j p, 1/2 in (5.2) is re- 
placed by t'( 1/2 the upper a-point of the distri- 
bution of the maximum of the absolute values of p 
equicorrelated standard normal random variables 
with common correlation p = ?; the values of t' 1/2 
have been tabulated for selected p and 1 - a by Odeh 
(1982). 

Some representative values of N and NEQ are given 
in Table 5 for aId = 5. It can be seen that the relative 
savings (NEQ- N)/N as well as the absolute savings 
(NEQ - N) increase with p and 1 - a; for two-sided 
comparisons both relative and absolute savings are 
greater in each case than those for one-sided compari- 
sons. It should be noted from (5.1) and (5.2) that the 
relative saving (ignoring the integer restrictions on N 
and NEQ) is independent of a/d while the absolute 
saving is directly proportional to (a/d)2. 

(b) Dunnett's allocation rule RD: Again for con- 
venience, we consider the important special case a2 = 
a = *- = 2 = c2 (say). RD chooses the Ni 
(1 ?i< p) equal to No/X/p = ND//p(1 + p/p), where 
ND is the total sample size required by RD to guaran- 
tee the specified requirement on the joint confidence 
statement. For one-sided comparisons 

ND = <{(1 + p)(a/d)t P P* 2>, (5.3) 

where p* = (1 + /p)-~. For two-sided comparisons 
t(), p. is replaced by t'()p p*. 

Tables of t(r) p p* and tp, p are available only for 
p = 4 when p* = , and for p = 9 when p* =; see 
Gupta, Nagel, and Panchapakesan (1973) for the 
tables of t\), p p* and Odeh (1982) for the tables of 
t', p* For other values of p, interpolation in p be- 

Table 5. Values of VN and NEQ (o2 ... = 2. 

0 =p;a/d =5)1 

Type of P 
1 - C Comparison 2 5 10 

1 - sided 154 566 1383 

0.75 156 582 1474 
2 - sided 314 910 1998 

318 978 2277 
1 - sided 

0.95 

0.99 

2 - sided 

1 - sided 

2 - sided 

541 

552 

1363 

1500 

719 1701 

735 1896 

958 2147 

984 2418 

1142 2485 

1173 2814 

2781 

3366 

3353 

4059 

4103 

5060 

4668 

5797 

The er entr in eah i N and the er entr i NEQ 
EQ- 

Table 6. Values of AN and ND (a2 =... =2 = 2; 
0 =p; /d =5)1 

Type of p 
1 - a/ Comparison 4 9 

1 I-sided 419 1211 

0.75 429 1238 

2-sided 705 1773 

709 1782 

1-sided 1086 2493 

0.95 1088 2497 

2-sided 1373 3020 

1374 3022 

1-sided 1755 3711 

0.99 1755 3712 

2-sided 2044 4233 

2044 4233 

I 
/ The upper entry in 

entry is ND. 

each cell is N and the lower 

comes necessary. In Table 6 we have given repre- 
sentative values of N and ND only for p = 4 and p = 9. 
It can be seen that RD gives N-values quite close to the 
optimum N given by A for large values of 1- a 
(> .95). This is not surprising in view of the fact that 
as 1 - c approaches unity, R approaches RD. How- 
ever, for moderate values of 1 - a (- .75 to .90) the 
absolute saving (ND - N), which is proportional to 
(of/d)2, can be large if a/d is large. 

(c) Bechhofer and Turnbull's unrestricted optimal al- 
location rule RBT: The optimal allocation rule R of the 
present article computes the allocations under the 
restriction that the variances of the treatment means 
a2/Ni (1 < i < p) are equal. For most practical appli- 
cations this is a reasonable restriction. However, it is 
of some theoretical interest to determine how much is 
lost in terms of the increased total sample size because 
of this restriction. We emphasize that if the a2 
(1 < i < p) are equal, then the unrestricted and re- 
stricted optimal allocations are identical and nothing 
is lost because of the imposition of the restriction. 

For one-sided comparisons the equations for find- 
ing the unrestricted optimal allocation and the associ- 
ated minimal total sample size NBT are given in Bech- 
hofer and Turnbull (1971) for specified 1 - a and d 
and given (a02, c2, .., o2). Using these equations we 
have made a sample calculation of NBT for p = 2, 

2 = 1, o2 = 0, 02 = 9 (i.e., 0 = 1= p/2), 0o/d = 5 
and 1- = .75, .95, and .99; the corresponding 
N-values were calculated from (5.1). The results are 
shown in Table 7. 

TECHNOMETRICS ?, VOL. 25, NO. 1, FEBRUARY 1983 

93 



ROBERT E. BECHHOFER AND AJIT C. TAMHANE 

Table 7. Values of N andNBT for One-Sided Com- 
parisons (p = 2; ol = 1, 2- = 1/10, o2 = 9/10; 

(o/d = 5) 

1 - ac N NBT 

0.75 101 88 

0.95 367 338 

0.99 655 614 

It can be seen that substantial savings in total 
sample size are possible using the unrestricted optimal 
allocation if the a2 (1 < i < p) are highly unequal, 
which they are in the present example. However, it is 
not feasible to give tables of unrestricted optimal allo- 
cations not only because they are much harder to 
compute and require tabulation of p + 1 quantities- 
A and (70, yV . .,p- 1) -but also because a separate 
calculation must be made for every (a2/oa. 
a72/C2)-vector. 

6. CLOSING REMARKS 

The tables in this article should be useful in the 
design of experiments for comparing several test treat- 
ments with a control. The tables enable the experi- 
menter to determine the minimum total sample size 
necessary in order to make specified one-sided or 
two-sided joint confidence interval estimates of the 
differences between the means of each of the test treat- 
ments and the mean of the control treatment; the 
tables also tell the experimenter how to allocate the 
observations optimally among the test treatments and 
the control treatment (under the restriction that the 
variances of the test treatment means are equal). Com- 
parisons with certain other allocation rules indicate 
that substantial savings are possible using the optimal 
allocations given herein. 
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APPENDIX: FORMULAS FOR OPTIMAL 
ALLOCATION, AND DETAILS 

OF COMPUTATION 

A.1 Formulas for Optimal Allocation for One- 
Sided Comparisons (Reference B1 ) 

Let D( -) and 4( ) denote the standard normal dis- 
tribution and density function, respectively, and let 

qDk( * p) denote the equicoordinate k-variate standard 
normal distribution function with common corre- 
lation p. Then the (7y, A) given in Tables 1 through 4 
are the unique solutions of the following simultaneous 
equations (A.1) and (A.2): 

r00 "/ x vi - Y1/2- 
I)p 

x ( + )(I T) d(D(x)= 1 -L, (A. 1) 
-oo _-..I 0 - 

[(1-_)y2 _ 2y + l])p_ [ I (1 (l-7y)/{2(1-7)+ 70 }] 

(p- l)( - 1)(1 - )0 

2(1 - y) + 70 

- 1-7+y0 /2 ~1-y x 
(DI) ,_+2J 3(-)+70 = ,- p_D 

2 
{ y y3(1-{+ 0 3(1 - y) + y =0 

(A.2) 
where 

0(1 - 7) /2 

l [1- y + 70][2(1- ) + TO]J 

A.2 Formulas for Optimal Allocation for Two- 
Sided Comparisons (Reference B2) 

Here the (y0, ;) given in Tables 1 through 4 are the 
unique solutions of the following simultaneous equa- 
tions (A.3) and (A.4): 

f {-( X+)(1 -)1 

- (- 0X ( }- dF(x) = 1 -Wy /\ ? } _ 
a, (A.3) 

-[(l 
- 0)72 - 2y + l]D, _ (p - 1)[0(1 _ 7)]1/2 

(1 _ 7 + 70)1/2 [2(1 - ) + 70] 1/2 

x 4(T)D'2 - 0/ '{2(1 - 7) + 70 D = 0 (A4) 
0where 

where 

D1 = (Ip-,(-A,iT, T, {(1 - 7)/{2(l - 7) + y0}), 

D2 = Dp-2(-A2T2, r2 (1 - y)/{3(l - y) + y70}), 

T1 =T, 

T2 = r[(1- + 70)/{3(1 - 7) + 70}]1/2, 

T3 = AT2, 

A1 = {2(1 - 7) + 70}/70, 

A2 = {4(1 - 7) + 70}/70, 

and 

ok(a, b I p) = P{a < Zi < b (1 < i < k)}, 
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where the Zi are standard normal with corr{Zi, 
Zj} = pfori ij, 1 < i,j < k. 

A.3 Details of Computation 

The IMSL (1978) subroutine ZSYSTM was used to 
solve the pairs of simultaneous equations (A.1), (A.2) 
and (A.3), (A.4). The stopping criteria used in arriving 
at the final solutions were the following: (a) the differ- 
ence between the left and the right sides of each equa- 
tion is less than 1 x 10 -6 or (b) in two successive 
iterations the corresponding trial values of 70 and , do 
not differ in the first six significant digits. 

To evaluate a quantity of the form (k(a, b I p) 
(which includes k(b I p) as a special case for a = - oo) 
the following iterated integral representation (see 
equation (2) of Bechhofer and Tamhane 1974) was 
used: 

(Dk(a, b p) = f {( x1/2 -+ b 

xp1/2 + a k 

- (1 _ p)2 (x) 
For p = 2 the quantity (D p_(a, b I p) reduces to 
(F(b) - (D(a) and (-p_ 2(a, b I p) = (Do(a, b I p) = 1. Thus 
the evaluation of the various expressions is particu- 
larly simple for p = 2. 

To evaluate (( ) the formula (26.2.17) given in 
Abramowitz and Stegun (1964) was used; this formula 
is accurate to within +7.5 x 10-8. The Romberg 
quadrature method (Davis and Rabinowitz 1967, p. 
166) was used to evaluate the various integrals. All of 
the calculations were done on a CDC 6600 computer 
at Northwestern University. 

The tabulated values of y0 are rounded off in the 
third decimal place while the values of A are rounded 
up in the third decimal place (to insure a joint confi- 
dence coefficient > 1 - a). 

[Received April 1981. Revised May 1982.] 
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